What Google knows about ML languages that you may not

(Spoiler: only Swift and Julia make
the cut)

Alan Edelman (MIT & JC)
Viral Shah (Julia Computing)

Juan Pablo Vielma (MIT)
@E& esJulia Chris Rackauckas (UC Irvine)

o ...
CSAIL computing Ui JUIla

Software Toolchain

I) L(”l!/
@ @ %D
DCLL—I G m— &k LD

i~ -
)

=R 0, Ve, =(0:,9r(r 0r)]" (Vi€

Vo€ = (00, 9r(xr,0:)]" (Vs ., E)
Ezample: deep neural network Ir”l = p(Arzr + by)
Vr=R,...,0, ;;,E;E:%! M, p(Arzy+b) OV, €
Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction
Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification

?lays nicely
V\/I‘['L\ O‘H’we(S

2

Jack Be Nimble
Jack be nimble, =&f

Jack be quick,
Jack Jump over
the candlestick.

[——

Modern Software Development

Languages Studied by Google as Powerful for ML

""Q A PY thon TypeScript

JavaScript

! Scala

PROGRAMMING
Language

///, N

https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

Languages Studied by Google as Powerful for ML

1. Filter on Technical Merits

Languages Studied by Google as Powerful for ML

2. Filter on Usability
1. Filter on Technical Merits

Languages Studied by Google as Powerful for ML

Julia: Julia is ... currently investing in machine learning
techniques, and even have good interoperability with
Python APIs. The Julia community shares many common
values...

2. Filter on Usability
1. Filter on Technical Merits

'F ®C++473% @Python411% ®HTML59% ®Jupyter Notebook 2.4% ®Go13% ®Java0.7% Other 1.3%
TensorFlow - SSSSSS—————————.

PYT b RCH ®Python32.1% O C++ 29.6% ® Cuda 18.0% ®C15.6% CMake 3.4% ® Fortran 0.6% Other 0.7%
N

+* . . .
Q Cafer ® C++ B0.1% @ Python 9.1% ® Cuda 5.9% CMake 2.8% ® Matlab 0.9% @ Makefile 0.7% Shell 0.5%
e — | o

E. NTK ©C++547% ®JupyterNotebook 25.9% @Python11.5% @Cudad.1% @C#1.1% @ Shell 0.9% Other 1.8%

KNet @ Julia 84.5% @ Cuda 9.8% ®C1.8% @ Makefile 1.7% @ Matlab 1.7% @ Python 0.4% Other 0.1%
e m——,

Flux ® Julia 100.0%

Psychology of Programming Languages

All languages are
equally good.

... but | tune out
any mention of
languages | don’t
use

Psychology of Programming Languages

All languages are
equally good.

... but | tune out
any mention of
languages | don’t
use

...at least until
Google tells me
to pay attention

Software Toolchain

I) L(”l!/
@ @ %D
DCLL—I G m— &k LD

i~ -
)

=R 0, Ve, =(0:,9r(r 0r)]" (Vi€

Vo€ = (00, 9r(xr,0:)]" (Vs ., E)
Ezample: deep neural network Ir”l = p(Arzr + by)
Vr=R,...,0, ;;,E;E:%! M, p(Arzy+b) OV, €
Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction
Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification

?lays nicely
V\/I‘['L\ O‘H’we(S

2

Jack Be Nimble
Jack be nimble, =&f

Jack be quick,
Jack Jump over
the candlestick.

[——

Topology Optimization ---- 20 years ago what we did

Write Force Balance Law = Finite Elements = Linear System = Solve = Graph

Dense Matrices

!

Sparse Matrices

Fancy Differential Equations = Dimensionality Reduction =

Write Force Balance Law = Finite Elements = Linear System = Solve = Graph

Topology Optimizaton .
Dense Matrices

!

Compose many physical systems Sparse Matrices

Black Boxes vs White Boxes

Floating Point
Numbers

|

Floating Point
Numbers

Generic Types

J

visible
code

I

Generic Types

Black Boxes vs White Boxes

FIoatmg Point Generic Types

Numbers ﬁ

visible
code

Floating Point

Numbers ﬁ

© Legacy Code ConoriT
ypes
@ Can’t hit all the criteria Code must rewrite other code

An Idealized Modern Toolchain for Energy

(we can have this!)

Today (Fragmented) What could be with high level tools

& generic types
PDEs, PDMPs, ... floats in o
< trigger on demand,
True Physical Equations sensitivity analysis
floats out adaptive data generation
Neural Network, ... floats in for more accurate surrogates
l < needs programmable form
iali machine learnin
floats out specialized a!c. ine ea. |. g.
floats in models for efficient optimization
optimal solutions with
Optimization uncertainty estimates

floats out N Ihr jUIla

RETROFITTING YOUR MANUFACTURED

HOME FOR ENERGY EFFICIENCY

o Install energy-efficient windows and doors
@ Replace insulation in the belly

6 Make general repairs (seal bottom board, caulk
windows, doors, ducts, etc.)

Q Add insulation to your walls
@ Install or seal belly wrap

Add insulation to your roof or install a roof cap

Retrofitting your software for
machine learning, sensitivity analysis, scalability,

optimization

0 Install energy-efficient windows and doors

.1} Add insulation to your walls
9 Install or seal belly wrap

e Add insulation to your roof or install a roof cap

ML models are really programs

- Support hardware accelerators (GPUs, TPUs, Nervana, New silicon)
- Parallelization (Multi-threading, Multi-GPU, Distributed)

- Optimization (Placement, Memory Use, Low overhead)

- Automatic Differentiation

- Ease of programming (Math notation, Debuggers, Libraries)

- Ease of deployment (Cloud, Phones, Embedded)

ML problems are really language problems

New models have new demands

Models commonly need: ®
Conditional branching

Loops for recurrence

@
Recursion over trees . _ ingesiously N
Stanford TreeBank i e constructed
def model(tree):
if isleaf(tree):
tree.value Memento

else:

model(tree.left) + model(tree.right)

In areas such as probabilistic programming

- Models need to reason about other programs (e.g. program generators and interpreters)

- Include non-differentiable components like Monte Carlo Tree Search.

https://arxiv.org/pdf/1503.00075.pdf
https://eng.uber.com/pyro/
https://arxiv.org/pdf/1705.03633.pdf
https://arxiv.org/abs/1605.06640

TensorFlow i1s more like a language and

less like a library

® We build a “computational graph” (essentially an AST)

a = tf.constant(3.8, dtype=tf.float32) Lazy (Eval) programming in JS
b = tf constant(4.8) # also tf.float32 implicitly Add
const3
total = a + b)
print{a) consts function add(a,b) {
print(b) N s
+
print(total)) return “${aj+${b}
® Which may contain control flow (tf.if, tf.while), variable scoping x=1y=2
def my_image_filter(input_images): Z= add(X,y) n Xty
with tf.variable_scope(conv1"): eval(Z) /13
Variables created here will be named "convi/weights”, "convi/biases —4
relul = conv_relu(input_images, [5, 5, 32, 32], [32]) X=
with tf.variable_scope(“conv2"): eVﬂ'(Z) /I 6
Variables created here will be named “convZ/weights”, “conv2/biases”.

return conv_relu(relul, [5, 5, 32, 32], [32])

® Cannot reuse existing libraries. Need new libraries for I/O and data processing.

Abadi, M., Isard, M., Murray, D., A Computational Model for TensorFlow: An Introduction, 2018.

Mixed Integer Optimization and Julia

* Mixed Integer Optimization
 Discrete + nonlinear
* Theoretically hard
* Routinely solved in practice

FedEx o =en
X ORACLE & atat
W TransUnion IsO
= U'S AIRWAYS Corianty
1i@it Inr
)
2 Google = @
) AMD &1 o ANarrnott Ferrari
:_'-:'-'-:i LLLLLLLLLLLLL Microsoft SIEMENS
niclsen @y pPrudential Buarsovesea 5~
AL ER EB 8l |
N ETIELIX FREPED orpoiliiton /

http://www.gurobi.com/company/example-customers

julia

o “‘JUMP

* Optimization
modelling language
and interphase

* Easy to use and
advanced

* Integrated into Julia

GPU computing in Julia

Native Array Libraries — CuArrays.jl, GPUArrays.jl, CLArrays.|l

i ey i GPu ; ; E ; : ; ; ; ;
ansnadhassasssfansnsnsdhannnnnasfassssasfensnnnnsnprsnsnanfeasnannahensnnnnnfunn
Julia code code rause lulia code +® ' H !

' T Main compiler ¢ CUDAnative.ji
Front-end [+
J, GPU
front-end
/ rr # High-level |
optims
1
Middle-end |+
l GPL
middle-end
J#,«-”lrl.uu.*rwnn S
optims
I"‘-‘—__‘—'_._.— \I
CPU GPU
back-end back-end
_/

CUDAnNative.jl: 1,300 LOC

performance difference (%)

R ' + - :‘P + : T :
#@P ﬁ‘\& ﬁyﬂa" & fﬁﬁ o £ J*O‘BQ o o+ +
& & p o+

benchmark

Performance difference between CUDA C++ and CUDAnative.jl
implementations of several benchmarks from the Rodinia
benchmark suite.

Besard. T., Foket, C., De Sutter, B., Effective Extensible Programming: Unleashing Julia on GPUs, 2017.

Julia ML at PetaScale to catalog the visible universe

650,000 cores. 1.3M threads. 60 TB of data.

Cataloging the Visible Universe through Bayesian Inference at Petascale

Jeffrey Regier®, Kiran Pamnany!, Keno Fischer!, Andreas Noack®, Maximilian Lam®, Jarrett Revels®,
Steve Howard¥, Ryan Giordano¥, David Schlegel!, Jon McAuliffe¥, Rollin Thomas', Prabhat!

*Department of Electrical Engineering and Computer Sclences, University of California, Berkeley
t Parallel Computing Lab, Intel Corporation
1Julia Computing
SComputer Science and Al Laboratories, Massachusetts Institute of Technology
SDepartment of Statistics, University of California, Berkeley
' Lawrence Berkeley National Laboratory

Berkeley

UNIVERSITY OF CALIFORNIA

y,

. A i
reeecec| .'J l I e
Most light sources are near the detection limit. — ‘ o0 u la I I
o\l computing
§

p/s

)
§ @©
)
)
al
LO
—i
_
)
7))
M
G5
s
O.
O

It just works (Part I)

N
=" stackoverflow

importance of PCA or SVD in machine learning

. Allthis time (specially in Netflix contest), | always come across this blog (or leaderboard forum)
where they mention how by applying a simple SVD step on data helped them in reducing sparsity in
31 data or in general improved the performance of their algorithm in hand. | am trying to think (since

Autodiff:
Calculus from another angle

“We can teach our autoditf
system to differentiate the
svd” vs “Itjust works
because of built in
abstractions in language
design”

(and the special role played by Juka's multipie dispatch and compiler technology)

At the heart of modem machine learning, so popular in (2018), is an optimization probid
suddenly differentiation, especially automatic differentiation, is exciting.

The frst time one hears about automatic differentiation, it s easy to imagine what it is
what

Automatic Differentiation in 10 minutes with Julia
1,692 views

. The Julia Language
Published on Jun 1,2018

Automatic differentiation is a key technique in Al - especially in deep neural networks. Here's a
short video by MIT's Prof. Alan Edelman teaching automatic differentiation in 10 minutes using

Julia.
SHOW MORE

It just works (Part II)

Machine learning with

operators (not dense Build Operators
matrices, not sparse solve with
matrices) “backslash”
d ToA,s dWy,db)T
it B R Rl P T Not Blackboard >
= : formula—>
dzy (zh 1 ® An-1,6N-1) (dWx—1,dby_1)T) .
Az 41 (2%, ® An, 6x) (AW, dby)T 1mp1ementat10n9
debuggin
0 .. 0 0 0\ / das 8818
Az Wz Cee 0 0 0 d$3
+ ;
An-1Wn_1 0 0 dzn &

L] []
AxWy 0) \deys, julia

Software Toolchain

&(z) = L(zRrs1,Y)

D—QLL— p
""‘

position: Vr=R,..., 0, V..&=|0:9gr(z, 0)] (V2 1:€)
Vo€ = (00, 9r(xr,0:)]" (Vs ., E)

Ezample: deep neural network 41 = p(A,2r + by)
V:.E=ATM,
Vr=R,...0, V4E=Maz M)Az +b)0OV,,,,E
Vs, € = M, 1

Multiphysics (PDEs) Optimization = Adjoint Methods
(Backprop/Autoditf)

Composability Sensitivity Analysis Performance

Contidence Intervals Nimble/Agile

Jack Be Nimble
Jack be nimble, =&f

Jack be quick,
Jack Jump over
the candlestick.

?lays nicely
V\/I‘['L\ O‘H’we(S

2

[——

Machine Surrogat
Learning Dim R

Uncertainty S
Quantification

